Unidirectional quantum walks: Evolution and exit times

نویسنده

  • Miquel Montero
چکیده

In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the currently widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are essentially equivalent, the present approach leads us to consider discrete Fourier transforms, which eventually results in obtaining explicit expressions for the wave functions in terms of finite sums and allows the use of efficient algorithms based on the fast Fourier transform. The wave functions here obtained govern the probability of finding the particle at any given location but determine as well the exit-time probability of the walker from a fixed interval, which is also analyzed.

منابع مشابه

A path integral formula with applications to quantum random walks in

We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the...

متن کامل

Symmetry in Quantum Walks

A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various ...

متن کامل

First-exit times and residence times for discrete random walks on finite lattices.

In this paper, we derive explicit formulas for the surface averaged first-exit time of a discrete random walk on a finite lattice. We consider a wide class of random walks and lattices, including random walks in a nontrivial potential landscape. We also compute quantities of interest for modeling surface reactions and other dynamic processes, such as the residence time in a subvolume, the joint...

متن کامل

Integrability of exit times and ballisticity for random walks in Dirichlet environment

We consider random walks in Dirichlet random environment. Since the Dirichlet distribution is not uniformly elliptic, the annealed integrability of the exit time out of a given finite subset is a non-trivial question. In this paper we provide a simple and explicit equivalent condition for the integrability of Green functions and exit times on any finite directed graph. The proof relies on a quo...

متن کامل

Dynamical Localization of Random Quantum Walks on the Lattice

The denomination Quantum Walks (QW for short) covers several variants of the definition we provide below . Informally, a QW describes the discrete time quantum dynamics of a particle with internal degree of freedom, the quantum walker, on a lattice. This dynamics consists in making the walker jump between neighboring sites of the lattice. The Hilbert space of the particle is the tensor product ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013